
O Level Physics Tutorial 15: DC Circuits

Syllabus :

(a) draw circuit diagrams with power sources (cell, battery, d.c. supply or a.c. supply), switches, lamps, resistors (fixed and variable), variable potential divider (potentiometer), fuses, ammeters and voltmeters, <u>bells</u>, light-dependent resistors, thermistors and light-emitting diodes

1. State the name of the circuit component represented by each of the symbols below.

Circuit symbols

Figure 15-1

(b) state that the current at every point in a series circuit is the same and apply the principle to new situations or to solve related problems

2. The current at point A in the circuit below is 0.1 A.

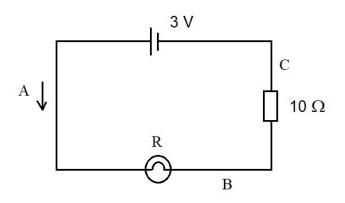


Figure 15-2

State the currents at B and C.

(c) state that the sum of the potential differences in a series circuit is equal to the potential difference across the whole circuit and apply the principle to new situations or to solve related problems

3. The voltage between A and B is 2 V, between B and C is 1 V.

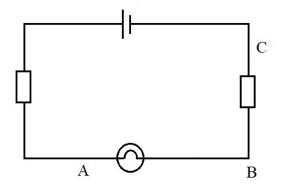


Figure 15-3

Find the voltage between A and C.

(d) state that the sum of the currents in the separate branches of a parallel circuit is equal to the current from the source and apply the principle to new situations or to solve related problems

(e) state that the potential difference across the separate branches of a parallel circuit is the same and apply the principle to new situations or to solve related problems

4. In the circuit below, the current I from the cell is 0.3 A.

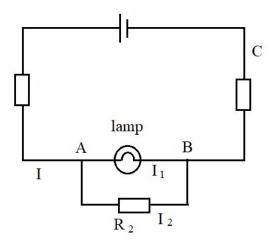


Figure 15-4

At A, it splits into two parts. The part that goes through the lamp is 0.2 A. What is the current through resistor R_2 .

(f) recall and apply the formulae for the effective resistance of a number of resistors in series and in parallel to new situations or to solve related problems

5. (a)

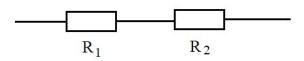


Figure 15-5(a)

The combined resistance R of two resistors R_1 and R_2 in series is given by

 $\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$

Find the combined resistance of a 2 Ω and a 3 Ω resistors in series.

(b)

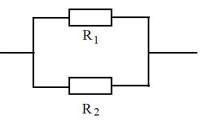


Figure 15-5(b)

The combined resistance R of two resistors R_1 and R_2 in parallel is given by

 $1/R = 1/R_1 + 1/R_2$

Find the combined resistance of a 2 Ω and a 3 Ω resistors in series.

4 https://drhockphysics.sg/ (g) recall and apply the relevant relationships, including R = V / I and those for current, potential differences and resistors in series and in parallel circuits, in calculations involving a whole circuit

6.

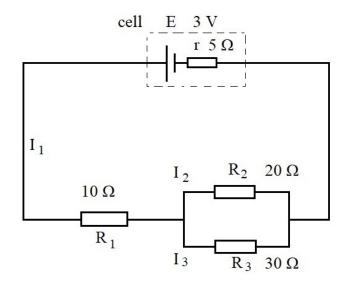


Figure 15-6

- (i) Find the combined resistance of R_2 and R_3 .
- (ii) Find the current I_1 .
- (iii) Find the voltage across R₂.
- (iv) Find the currents I_2 and I_3 .
- (v) Find the voltage across the cell.
- (vi) What is the decrease in voltage across the cell due to the internal resistance r.

(h) describe the action of a variable potential divider (potentiometer)

7. In this circuit, AB is a 1 m long wire with resistance 10 k Ω . It has uniform cross-section, so the resistance of any part of the wire (like x) is proportional to the length of that part. The idea is to provide an adjustable voltage between 0 and 2 V.

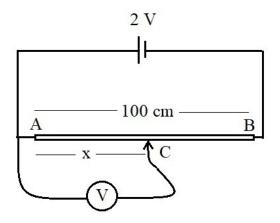


Figure 15-7

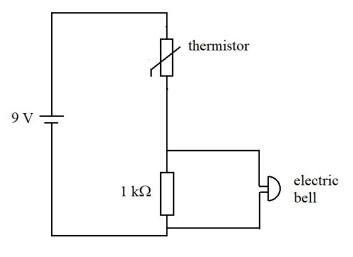
A voltmeter is connected between point A and C, where C can be moved to any part of the wire. Find the voltmeter readings for these values of x:

- (i) 0 cm
- (ii) 20 cm
- (iii) 60 cm
- (iv) 100 cm

(i) describe the action of negative temperature coefficient (NTC) thermistors and light-dependent resistors and explain their use as input transducers in potential dividers

8. (a) Describe how a thermistor works and explain how it can be used in a potential divider.

(b) Describe how a light-dependent resistors works and explain how it can be used in a potential divider.


(j) solve simple circuit problems involving NTC thermistors and light-dependent resistors.

7. The resistance of a thermistor decreases when it gets hot, like if there is a fire.

Assume that the resistance-temperature $R-\theta$ graph is a straight line.

$$\frac{\theta / \deg C}{20} = \frac{R / k\Omega}{6}$$
100 0.3

This figure shows a simple fire alarm circuit.

The electric bell rings when its voltage is over 5 V.

Estimate the temperature when it rings.

Updated 6 March 2025